multiplications
英 [ˌmʌltɪplɪˈkeɪʃənz]
美 [ˌmʌltəpləˈkeɪʃənz]
n. 乘; 相乘; 增加
multiplication的复数
双语例句
- Consequently, a new algorithm is proposed which greatly decreases the nontrivial multiplications needed in such circumstances ( cf.: 4.1.3 and 4.1.4).
所以,本文针对这些情况提出了一种新的算法,大幅度地降低了所需的非平凡乘法次数,详见4.1.3和4.1.4节。 - Meanwhile, it is proved that the multiplications on the homotopy classes defined by CoH-arrow group and H-arrow group are the same and commutative.
同时证明了若CoH-arrow同伦类有分别由CoH-arrow群乘法与H-arrow群乘法给出的两个群乘法,则这两个乘法相同且是可交换的。 - As compared with the FPT algorithm for 2-D cyclic convolutions, the amount of multiplications of the algorithm introduced here decreases by one order of magnitude, and also it relieves the strict restriction of word length about cyclic convolution scale in FNT algorithm of 2-D cyclic convolutions.
与二维循环卷积的FPT算法相比,乘法量减少了一个数量级,同时实际取消了FNT算法中卷积规模所受到的字长的限制。 - The optimum paths for multiplications of 7 and 8 are depicted in Figure 6.17.
图6.17中描绘了倍增7倍和8倍的最优路径。 - Experiment results indicate that the proposed algorithms can save up to 1/ 3 and 1/ 2 multiplications, compared with traditional Self-Organizing Mapping learning algorithm.
实验表明,相对于传统的自组织映射学习算法,所提两种方法分别可以节约近1/3和1/2以上的计算量。 - Besides, in order to cut down the enormous Inverse Fast Fourier Transforms ( IFFTs) of CSLM, a new scheme that replaces the IFFT operations with matrix multiplications is presented.
另外,为了减少CSLM算法中繁多的快速傅里叶逆变换(IFFT),提出了一种利用多矩阵相乘代替IFFT运算的新方案。 - Compared with the existing schemes without suffering from key escrow, ours achieves higher efficiency since the signing algorithm needs only one scalar multiplication in the additive group while the reverse operation requires only three scalar multiplications. 4.
与已有的无密钥托管的签名方案相比,我们的方案实施效率高:签名算法只需要1个加法群上的标量乘运算,而验证算法仅需3个标量乘运算。 - A symmetric generator polynomial was applied, and the number of Galois-field ( GF) multiplications was reduced in the encoder.
在编码器中,采用系数对称的生成多项式,减少了迦罗华域(GF)乘法器的个数。 - All of these algorithms avoid calculating functions which need much more time, and usually, only 4 additions and 4 multiplications are needed to accurately calculate the coordinates of the Points on the arcs.
这些算法避免了需要较长时间的函数值计算,一般只需进行4次乘法和4次加法运算,就可以由曲线弧上前一点的坐标值精确地计算出下一点的坐标值。 - As to repeated declarations, tthe final one shall prevail for multiplications.
多次申报的,以最后一次申报为准。
