高考考查的不仅仅是一些基础知识,要想学好数学,一定要掌握一定的数学思想和数学思维,学会用数学思维解决问题,哪一种题型需要注意什么,哪一种题型从哪里下手?下面是小编为大家整理的关于高考数学提分专项练习题及答案,希望对您有所帮助。欢迎大家阅读参考学习!
高考数学提分专项练习题及答案
一、选择题
1.如图所示,已知正方体ABCD-A1B1C1D1的棱长为2,长为2的线段MN的一个端点M在棱DD1上运动,另一端点N在正方形ABCD内运动,则MN的中点的轨迹的面积为( )
A.4π
B.2π
C.π
D.-π
答案:
D 解题思路:本题考查了立体几何中的点、线、面之间的关系.如图可知,端点N在正方形ABCD内运动,连接ND,由ND,DM,MN构成一个直角三角形,设P为NM的中点,根据直角三角形斜边上的中线长度为斜边的一半可得,不论MDN如何变化,点P到点D的距离始终等于1.故点P的轨迹是一个以D为中心,半径为1的球的球面,其面积为.
技巧点拨:探求以空间图形为背景的轨迹问题,要善于把立体几何问题转化到平面上,再联合运用平面几何、立体几何、空间向量、解析几何等知识去求解,实现立体几何到解析几何的过渡.
2.如图,P是正方形ABCD外一点,且PA平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( )
A.平面PAB与平面PBC、平面PAD都垂直
B.它们两两垂直
C.平面PAB与平面PBC垂直,与平面PAD不垂直
D.平面PAB与平面PBC、平面PAD都不垂直
答案:A 解题思路: DA⊥AB,DAPA,AB∩PA=A,
DA⊥平面PAB,又DA平面PAD, 平面PAD平面PAB.同理可证平面PAB平面PBC.把四棱锥P-ABCD放在长方体中,并把平面PBC补全为平面PBCD1,把平面PAD补全为平面PADD1,易知CD1D即为两个平面所成二面角的平面角,CD1D=APB,
★ 高三数学一轮复习三大提分妙招及答题技巧