各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是小编给大家整理的最新八年级数学知识点,希望对大家有所帮助。
【相似、全等三角形】
1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
5、判定定理3三边对应成比例,两三角形相似(SSS)
6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
8、性质定理2相似三角形周长的比等于相似比
9、性质定理3相似三角形面积的比等于相似比的平方
10、边角边公理有两边和它们的夹角对应相等的两个三角形全等
11、角边角公理有两角和它们的夹边对应相等的两个三角形全等
12、推论有两角和其中一角的对边对应相等的两个三角形全等
13、边边边公理有三边对应相等的两个三角形全等
14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等
15、全等三角形的对应边、对应角相等
【等腰、直角三角形】
1、等腰三角形的性质定理等腰三角形的两个底角相等
2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
3、等腰三角形的顶角平分线、底边上的中线和高互相重合
4、推论3等边三角形的各角都相等,并且每一个角都等于60°
5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
6、推论1三个角都相等的三角形是等边三角形
7、推论2有一个角等于60°的等腰三角形是等边三角形
8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
9、直角三角形斜边上的中线等于斜边上的一半
1全等三角形的对应边、对应角相等
2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5边边边公理(SSS)有三边对应相等的两个三角形全等
6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7定理1在角的平分线上的点到这个角的两边的距离相等
8定理2到一个角的两边的距离相同的点,在这个角的平分线上
9角的平分线是到角的两边距离相等的所有点的集合
10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
11推论1等腰三角形顶角的平分线平分底边并且垂直于底边
12等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
13推论3等边三角形的各角都相等,并且每一个角都等于60°
14等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
15推论1三个角都相等的三角形是等边三角形
16推论2有一个角等于60°的等腰三角形是等边三角形
17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
18直角三角形斜边上的中线等于斜边上的一半
19定理线段垂直平分线上的点和这条线段两个端点的距离相等
20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
21线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
22定理1关于某条直线对称的两个图形是全等形
23定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
24定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
25逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
26勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
27勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
八年级数学知识点相关文章: