我认为要想学习好,必需要付出努力和心血,如果连自己都不学会努力的话,你将会放弃掉学习,努力和进步才能取得好的成绩,学习成绩也会更上一层楼,还会比自己原来的成绩更好。下面是小编给大家带来的高三数学科的上册知识点,希望大家能够喜欢!
高三数学科的上册知识点1
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式:
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
高三数学科的上册知识点2
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b>0? ;a-b=0? ;a-b<0? .
另外,若b>0,则有>1? ;=1? ;<1? .
概括为:作差法,作商法,中间量法等.
3.不等式的性质
(1)对称性:a>b? ;
(2)传递性:a>b,b>c? ;
(3)可加性:a>b?a+c b+c,a>b,c>d?a+c b+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0? ;
(5)可乘方:a>b>0? (n∈N,n≥2);
(6)可开方:a>b>0? (n∈N,n≥2).
复习指导
1.“一个技巧” 作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2.“ 一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.