任何科目的学习方法其实都是一样的,不断的记忆与练习,使知识刻在自己的脑海里。下面小编为大家带来小学五年级数学知识点最新,希望对您有所帮助!
小学五年级数学知识点
一、图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
二、因数与倍数
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
三、长方体和正方体
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)4 正方体的棱长总和=棱长12
4、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长宽+长高+宽高)2 S=(ab+ah+bh)2正方体的表面积=棱长棱长6 用字母表示:S=
6、表面积单位:平方厘米、平方分米、平方米 相邻单位的进率为100
7、体积:物体所占空间的大小叫做物体的体积。
8、长方体的体积=长宽高 用字母表示:V=abh 长=体积(宽高) 宽=体积(长高)高=体积(长宽)正方体的体积=棱长棱长棱长 用字母表示:V= aaa
9、体积单位:立方厘米、立方分米和立方米 相邻单位的进率为1000
10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积高 V=Sh
11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用低级单位数除以进率。
12、容积:容器所能容纳物体的体积。
13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米
14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。
四、分数的意义和性质
1、分数的意义:把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位1平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:ab= (b0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的最大公因数和最小公倍数:
①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
五、分数的加法和减法
1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。
3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
六、打电话
1、逐个法:所需时间最多;
2、分组法:相对节约时间;
3、同时进行法:最节约时间。
小学五年级数学上册知识点
一、小数乘整数
(利用因数的变化引起积的变化规律来计算小数乘法)
知识点一:
1、计算小数加法先把小数点对齐,再把相同数位上的数相加
2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:
积中小数末尾有0的乘法。先计算出小数乘整数的乘积后,积的小数末尾出现0,要再根据小数的性质去掉小数末尾的0。如:3.60 “0”应划去
知识点三:
如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。如0.02×2=0.04
知识点四:
计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
思考:
小数乘整数与整数乘整数有什么不同?
1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘小数
知识点一:
因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:
小数乘法的一般计算方法:
先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:
小数乘法的验算方法
1、把因数的位置交换相乘
2、用计算器来验算
三、积的近似数
知识点一:
先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。
知识点二:
如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。如6.597保留两位为6.60
四、连乘、乘加、乘减
知识点一:
小数乘法要按照从左到右的顺序计算
知识点二:
小数的乘加运算与整数的乘加运算顺序相同。先乘法,后加法
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
五、简便运算
整数乘法的交换律、结合律和分配律,对于小数乘法也适用
计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。
对于不符合运算定律的算式,有些通过变形也可以应用。
乘法分配律也可以推广到相应的减法。
小学数学万以内的加法和减法知识点
1、认识整千数(记忆:10个一千是一万)
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的高位上的数,如果高位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
较大的三位数是位999,小的三位数是100,较大的四位数是9999,小的四位数是1000。较大的三位数比小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、公式
和=加数+另一个加数
加数=和-另一个加数
减数=被减数-差
被减数=减数+差
差=被减数-减数
数学数字0的基本概念
0既不是正数也不是负数,而是正数和负数之间的一个数,且为正数和负数的分界线。当某个数X大于0(即X>0)时,称为正数;反之,当X小于0(即X<0)时,称为负数;而这个数X等于0时,这个数就是0。
小学五年级数学知识点笔记
第一单元:小数乘法
一、小数乘整数
1.意义:和整数乘法意义相同,就是求几个相同加数和的简便运算。例如。2.3×7。表示求7个2.3的和是多少?
2.计算方法先按整数乘法进行计算再在积中点上小数点(原来因数中有几位小数就在积中点几位小数)
3.积中小数末尾的零可以去掉。
二、小数乘小数
1.意义:1.2×3.6表示1.2的3.6倍是多少?
2.计算方法:先按整数乘法进行计算;再点小数点,点小数点时看因数中一共有几位小数就从积的右边起数几位点上小数点。
注意积中所有因数小数位数相加后点上小数点。
三、积的近似数。
用四舍五入法例如:0.26×0.38(保留一位小数)
四、简便运算整数乘法的运算定律在这里同样适用。
例如:12×0.7=0.7×12(乘法交换律)
(1.7×0.8)×0.125=1.7×(0.8×0.125)(乘法结合律)
(2.4+3.6)×5=2.4×5+3.6×5(乘法分配律)
五、小数乘法的应用和整数应用题做法相同,只是题中把整数换作小数但做法不变。
例如:一斤苹果3.8元。买0.8斤苹果,需多少元?
3.8×0.8=3.04(元)
第二单元:位置
位置表示方法:数对竖为列横为行。先写列,再写行。两边括号来站岗,中间逗号不能忘。
苹果(2,3)梨(4,4)西瓜(5,1)
第三单元:小数除法
一、小数除以整数1.意义:16.2÷5表示把6.2平均分成五份,每份是多少?
2.计算方法。按整数除法的方法去除,计算时商的小数点要和被除数的小数点对齐。
例如
二、除数是小数的除法意义17.6÷0.85表示已知两个因数的积是17.6与其中一个因数是0.85,求另一个因数。三、计算方法先把除数扩大为整数再把被除数扩大相同的倍数,然后按照除数是整数的计算方法计算。
例如
三、商的近似数用四舍五入法。商保留几位小数,要除到后一位。例如商保留一位小数那么要出到小数点后两位
四、循环小数。一个数的小数部分从某一位起,一个数字或几个数字依次不断重复出现这样的小数叫做循环小数。例如5.3333......。循环节:一个循环小数的小数部分依次不断出现的数字就是这个循环小数的循环节。例如5.3.....的循环节是3
第四单元:可能性
谁占的多,谁的可能性就大例如:有五张卡片分别有两张红色?一张黄色,一张蓝色,抽到红色的可能性最大。
第五单元:简易方程
一、用字母表示数例如小明有a元。小强是他钱数的2倍,小强就有2a元。
二、方程的意义含有未知数的等式叫做方程。例如2x=6 、3+x=11
注意:一定要含有未知数,且含有等号。
三、解方程
等式的性质:1.等号两边加同时加上或减去同一个数,左右两边仍然相等。2等号两边同乘同一个数或除以同一个不为零的数左右两边仍然相等。
使方程左右两边相等的未知数的值叫做方程的解。
求方程解的过程叫做解方程。
例如
例如。
例如:两个相邻的自然数和是97,这两个自然数分别是多少?
分析:未知的量是这两个数,设较小的数为X另一个数就是X+1;等量关系是相加为97;列出方程x+x+1=97;最后解方程
第六单元:多边形面积
平行四边形的面积=底x高
三角形的面积=底x高÷2
梯形的面积=(上底+下底)x高÷2
组合图形的面积。
第七单元:植树问题
两边都栽:树的棵数=间隔数+1
两边都不栽:树的棵数=间隔数-1
一端栽一端不栽:树的棵数=间隔数
例如。一条走廊长32米每隔4米摆放一捧绿植(两端不放),一共要放几盆绿植?
32÷4-1=7(盆)